32 research outputs found

    Towards a radiocarbon calibration for oxygen isotope stage 3 using New Zealand kauri (Agathis australis)

    Get PDF
    It is well known that radiocarbon years do not directly equate to calendar time. As a result, considerable effort has been devoted to generating a decadally resolved calibration curve for the Holocene and latter part of the last termination. A calibration curve that can be unambiguously attributed to changes in atmospheric ยนโดC content has not, however, been generated beyond 26 kyr cal BP, despite the urgent need to rigorously test climatic, environmental, and archaeological models. Here, we discuss the potential of New Zealand kauri (Agathis australis) to define the structure of the ยนโดC calibration curve using annually resolved tree rings and thereby provide an absolute measure of atmospheric ยนโดC. We report bidecadally sampled ยนโดC measurements obtained from a floating 1050-yr chronology, demonstrating repeatable ยนโดC measurements near the present limits of the dating method. The results indicate that considerable scope exists for a high-resolution ยนโดC calibration curve back through OIS-3 using subfossil wood from this source

    Myosin II regulates activity dependent compensatory endocytosis at central synapses

    Get PDF
    Recent evidence suggests that endocytosis, not exocytosis, can be rate limiting for neurotransmitter release at excitatory CNS synapses during sustained activity and therefore may be a principal determinant of synaptic fatigue. At low stimulation frequencies, the probability of synaptic release is linked to the probability of synaptic retrieval such that evoked release results in proportional retrieval even for release of single synaptic vesicles. The exact mechanism by which the retrieval rates are coupled to release rates, known as compensatory endocytosis, remains unknown. Here we show that inactivation of presynaptic myosin II (MII) decreases the probability of synaptic retrieval. To be able to differentiate between the presynaptic and postsynaptic functions of MII, we developed a live cell substrate patterning technique to create defined neural circuits composed of small numbers of embryonic mouse hippocampal neurons and physically isolated from the surrounding culture. Acute application of blebbistatin to inactivate MII in circuits strongly inhibited evoked release but not spontaneous release. In circuits incorporating both control and MIIB knock-out cells, loss of presynaptic MIIB function correlated with a large decrease in the amplitude of evoked release. Using activity-dependent markers FM1โ€“43 and horseradish peroxidase, we found that MII inactivation greatly slowed vesicular replenishment of the recycling pool but did not impede synaptic release. These results indicate that MII-driven tension or actin dynamics regulate the major pathway for synaptic vesicle retrieval. Changes in retrieval rates determine the size of the recycling pool. The resulting effect on release rates, in turn, brings about changes in synaptic strength

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, Pย =ย 1.65ย ร—ย 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, Pย =ย 2.3ย ร—ย 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, Pย =ย 3.98ย ร—ย ย 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, Pย =ย 4.99ย ร—ย 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers โˆผ99% of the euchromatic genome and is accurate to an error rate of โˆผ1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged โ‰ฅ18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5ยท0 months (IQR 4ยท2โ€“6ยท3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0ยท0001) and independently associated with COVID-19 status (odds ratio [OR] 2ยท9 [95% CI 1ยท5โ€“5ยท8]; padjusted=0ยท0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0ยท0001; parenchymal abnormalities), brain abnormalities (p<0ยท0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0ยท014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4โ€“10]; mean age of 59ยท8 years [SD 11ยท7] with multiorgan abnormalities vs mean age of 52ยท8 years [11ยท9] without multiorgan abnormalities; p<0ยท0001), more likely to have three or more comorbidities (OR 2ยท47 [1ยท32โ€“4ยท82]; padjusted=0ยท0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3ยท55 [1ยท23โ€“11ยท88]; padjusted=0ยท025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Structural Basis for pH-gating of the K+ channel TWIK1 at the selectivity filter.

    No full text
    TWIK1 (K2P1.1, KCNK1) is a widely expressed pH-gated two-pore domain K+ channel (K2P) that contributes to cardiac rhythm generation and insulin release from pancreatic beta cells. TWIK1 displays unique properties among K2Ps including low basal activity and inhibition by extracellular protons through incompletely understood mechanisms. Here, we present cryo-EM structures of TWIK1 in lipid nanodiscs at high and low pH that reveal a previously undescribed gating mechanism at the K+ selectivity filter. At high pH, TWIK1 adopts an open conformation. At low pH, protonation of an extracellular histidine results in a cascade of conformational changes that close the channel by sealing the top of the selectivity filter, displacing the helical cap to block extracellular ion access pathways, and opening gaps for lipid block of the intracellular cavity. These data provide a mechanistic understanding for extracellular pH-gating of TWIK1 and illustrate how diverse mechanisms have evolved to gate the selectivity filter of K+ channels

    Previously retracted axons reinnervate their former neuromuscular junctions after laser-targeted removal of the innervating axon.

    No full text
    <p>(A) Shown is a singly innervated neuromuscular junction with a nearby recently retracted axon (tipped by a bulb) in the sternomastoid muscle of P7 mouse in vivo. The pulsed laser irradiated the axon innervating the neuromuscular junction at the circle marked by a large arrow. After 1 h, the irradiated axon was mostly invisible, leaving the bulb-tipped retracting input unchanged. By the next day (1 d), the retracting input had reversed direction and nearly completely reinnervated the junction. After 2 d (2 d) the caliber of the reinnervating axon and its terminal branches increased. In this experiment it was unambiguous that the regenerated axon was the former withdrawing axon because the two axons could be distinguished by their relative concentrations of YFP and CFP. The bulb-tipped axon could also be re-identified after it reinnervated the junction because of the location of its proximal branch point (indicated by the small arrow in each image). Scale bar, 20 ยตm. (B) Graph showing the incidence of return of retracting axons as a function of its distance from the junction at the time of laser axotomy of the innervating axon (also see <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001352#pbio-1001352-t001" target="_blank">Table 1B</a>). The percentages were computed relative to the total number of retracting axons studied. Retracting axons 10 ยตm or closer appeared more likely to return than ones farther away.</p

    Small axonal inputs take over developing neuromuscular junctions after laser-targeted removal of larger inputs.

    No full text
    <p>(A, B) We identified doubly innervated neuromuscular junctions in sternomastoid muscles of P7-P8 mice in vivo, which were innervated by both a small caliber and a large caliber axonal input. Previous studies have shown that in most cases the small caliber input ultimately is eliminated from such junctions. In the cases shown here, laser irradiation of the larger caliber inputs (circles and arrows mark the sites of laser-induced damage) caused (A) their swelling or (B) rapid disappearance within 1 h of laser irradiation. After the damage, the synaptic area occupied by the un-irradiated smaller input could be clearly seen: (a) โˆผ20% of the total postsynaptic territory (lower left portion of junction) and (b) โˆผ5% of the area (lower middle portion of junction). The animals were allowed to recover from surgery and then re-anesthetized the next day and the neuromuscular junctions relocated. In each case, the small remaining input grew to occupy the entire neuromuscular junction at some time prior to 24 h. In addition in both cases the caliber of the axon entering the junction enlarged. The axons were imaged in singly and doubly transgenic mice that had constitutive cytoplasmic expression of (A) YFP (green) and (B) both CFP (pseudo-colored green) and YFP (red), respectively. In the latter there was a greater proportion of CFP in the smaller axon, making it appear greener (in the first panel) and thus possible to distinguish its territory from the sites occupied by the other axon even before laser axotomy. Scale bar, 20 ยตm.</p
    corecore